![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjs9QjxAeHfFfRHZ9VV5rfT3fJ_msvyDBQlvqiY9KMiKCei8tHNSbb1ngTNNHkRHpJ-qSMtfRSGqsE-deNG84OjBUuQ_EEnMMNIxAlfB_GQG3rHK141JN8vbjhE8sI_CWe3ZqcMAbMN8Xk_/s16000/Paralel+1.png)
Considered Formula;
$$\text {i)}\quad C = C_1 + C_2 \qquad \quad \Rightarrow \text {For parallel connection}$$ $$\qquad \text {Where}~~C \to Total~(Equivalent)~Capacitance,\\\qquad C_1 \to Capacitace~1 \\\qquad C_2 \to Capacitace~2$$![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgcy5VXUvY1-zKnFzogSKx4AtTDrn3UJvrDZVZc3GZqFsgh_-BZRR5fgf4OhlGOTMGUkqoU51S8oc2aDh8JtfcVj8Z2uF_iuq29LQFFp_3Aih8p7AWSFZIm6Ss70Znu1UGb14a4YbaXfeeC/s0/Series+1.png)
Example 1
Two capacitors of 20 μF and 25 μF are connected in
a)
Series, and
b) Parallel
What is the effective capacitance for (a) and (b)?
Solution
Data given
Capacitance 1 (C1) = 20 μF
Capacitance 2 (C2) = 25 μF
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgs-3Is6loUqry3ZNGQWqzpW0F8WMGQG4LHKi6nUvyhO_eTdlS7qE2gzWS4WApJk2u8MRSOGJ-PiLy37l7YwyvnS3xbs8xlLWhp-lXAIWiNfTTvHEMZ4RZ2QMqKcZOfShSK3DlwkbytV58k/s0/Series+2.png)
Effective capacitance (C) = ?
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C = \frac {C_1 \times C_2}{C_1 + C_2}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \frac {20 \times 25}{20 + 25}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \frac {500}{45}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 11.11~\mu F$$
The effective capacitance = 11.11 μF
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjT8tFRbwvzz0o1D-p1x2-FeMCAYD1DsPj_JYqJaxqGgmAHSTBzKiVvf_NsclbuKuWz_ojtb_OVAt69Y5cDxgfUnwhZWCVG1qlDTdBqqkbFB6PppCPDuVfBOtDpkrOWD0fP_nqkWmhS7mX_/s0/Paralel+2.png)
Effective capacitance (C) = ?
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C = C_1 + C_2$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 20 + 25$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 45~\mu F$$
The effective capacitance = 45 μF
No comments:
Post a Comment