Considered Formula;
$$\text {i)}\quad C = C_1 + C_2 \qquad \quad \Rightarrow \text {For parallel connection}$$ $$\qquad \text {Where}~~C \to Total~(Equivalent)~Capacitance,\\\qquad C_1 \to Capacitace~1 \\\qquad C_2 \to Capacitace~2$$
$$\text {ii)}\quad C = \frac {C_1 \times C_2}{C_1 + C_2} \qquad \quad \Rightarrow \text {For series connection}$$
$$\qquad \text {Where}~~C \to Total~(Equivalent)~Capacitance,\\\qquad C_1 \to Capacitace~1 \\\qquad C_2 \to Capacitace~2$$
Example 1
Two capacitors of 20 μF and 25 μF are connected in
a)
Series, and
b) Parallel
What is the effective capacitance for (a) and (b)?
Solution
Data given
Capacitance 1 (C1) = 20 μF
Capacitance 2 (C2) = 25 μF
a) In series connectionEffective capacitance (C) = ?
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C = \frac {C_1 \times C_2}{C_1 + C_2}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \frac {20 \times 25}{20 + 25}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \frac {500}{45}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 11.11~\mu F$$
The effective capacitance = 11.11 μF
b) In parallel connectionEffective capacitance (C) = ?
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C = C_1 + C_2$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 20 + 25$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 45~\mu F$$
The effective capacitance = 45 μF
No comments:
Post a Comment