Considered Formula;
$$\text {i)}\quad V.R = \frac {2\pi R}{P} \quad \Rightarrow For~Screw~and~Jack$$ $$\qquad \text {Where}~~V.R \to Velocity~ratio,\quad R \to Radius \\\qquad P \to Pitch$$ $$\text {ii)}\quad V.R = \frac {R}{r}\quad \Rightarrow For~Wheel~and~Axle$$ $$\qquad \text {Where}~~V.R \to Velocity~ratio,\quad R \to Radius~of~the~wheel \\\qquad r \to Radius~of~the~axle$$ $$\text {iii)}\quad V.R = \frac {R^2}{r^2}\quad \Rightarrow For~Hydraulic~press$$ $$\qquad \text {Where}~~V.R \to Velocity~ratio,\quad R \to Radius~of~large~piston \\\qquad r \to Radius~of~large~piston$$Example 1
A screw jack has 5 threads per centimeter, if the length of the turning lever is 20 cm. find the velocity ratio (ϖ = 3.14)
Solution
Data given
Radius (R)= 20 cm
$$ \text {Pitch (P)} = 20~cm= \Bigl ( \frac {1}{5} \Bigr )~cm = 0.2~cm$$Velocity ratio (V.R) = ?
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~V.R = \frac {2\pi R}{P}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \frac {2\times 3.14 \times 20}{0.2}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \frac {125.6 \times 10}{0.2 \times 10}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \frac {1256}{2}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 628$$
The Velocity ratio = 628
Example 2
A wheel and axle with an efficiency of 90% is to be raised a load of 10000 N. the radius of the wheel is
40 cm while radius of the axle is 5 cm. find
a)
Velocity ratio,
b) Mechanical advantage and
c) Effort
Solution
Data given
Radius of the wheel (R) = 40 cm
Radius of the axle (r) = 5 cm
Load (L) = 10000 N
Efficiency (ε) = 90%
a)
Velocity ratio (V.R) = ?
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~V.R = \frac {R}{r}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \frac {40}{5}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 8$$
The velocity ratio = 8
b)
Mechanical advantage (M.A) = ?
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \epsilon = \frac {M.A}{V.R} \times 100 \%$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~90 \% = \frac {M.A}{8} \times 100 \%$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~M.A = \frac {90 \% \times 8}{100 \%}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \frac {720}{100}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 7.2$$
The Mechanical advantage = 7.2
c)
Effort (E) = ?
$$ \qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~M.A = \frac {L}{E}$$ $$ \qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~7.2 = \frac {10000}{E}$$ $$ \qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~E= \frac {10000}{7.2}$$ $$ \qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~= \frac {10000 \times 10}{7.2 \times 10}$$ $$ \qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~= \frac {100000}{72}$$ $$ \qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~= 1389~N$$
The Effort = 1389 N
Example 3
The diagram below shows a hydraulic press being used to lift a container
weighting 100000 N
Radii of the effort and load piston are 20 cm and 5 m respectively, if the efficiency of the hydraulic press is 90%. Determine
a) Velocity ratio,
b) Mechanical advantage and
c) Minimum Effort
c) The distance the container raised through if the effort piston pushed through 1 m
Solution
Data given
Radius of large piston (R) = 5 m = (5 x 100) cm = 500 cm
Radius of small piston (r) = 20 cm
Load (L) = 100000 N
Efficiency (ε) = 90%
a)
Velocity ratio (V.R) = ?
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~V.R = \frac {R^2}{r^2}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \frac {500^2}{20^2}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \frac {250000}{400}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 625$$
The velocity ratio = 625
b)
Mechanical advantage (M.A) = ?
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \epsilon = \frac {M.A}{V.R} \times 100 \%$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~90 \% = \frac {M.A}{625} \times 100 \%$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~M.A = \frac {90 \% \times 625}{100 \%}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \frac {56250}{100}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 562.5$$
The Mechanical advantage = 562.5
c)
Effort (E) = ?
$$ \qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~M.A = \frac {L}{E}$$ $$ \qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~562.5 = \frac {100000}{E}$$ $$ \qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~E= \frac {100000}{562.5}$$ $$ \qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~= \frac {10000 \times 10}{562.5 \times 10}$$ $$ \qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~= \frac {1000000}{5625}$$ $$ \qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~= 178~N$$
The Effort = 178 N
b)
Distance moved by load (Ld) =?
Distance moved by effort (Ed) = 1 m
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V.R = \frac {Ed}{Ld}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~625= \frac {1}{Ld}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Ld = \frac {1}{625}$$ $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 0.0016~m$$
The distance raised by the container = 0.0016 m
This comment has been removed by the author.
ReplyDelete